Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Crit Care ; 26(1): 244, 2022 08 09.
Article in English | MEDLINE | ID: covidwho-1978786

ABSTRACT

BACKGROUND: A greater understanding of disease heterogeneity may facilitate precision medicine for coronavirus disease 2019 (COVID-19). Previous work identified four distinct clinical phenotypes associated with outcome and treatment responses in non-COVID-19 sepsis patients, but it is unknown if and how these phenotypes are recapitulated in COVID-19 sepsis patients. METHODS: We applied the four non-COVID-19 sepsis phenotypes to a total of 52,274 critically ill patients, comprising two cohorts of COVID-19 sepsis patients (admitted before and after the introduction of dexamethasone as standard treatment) and three non-COVID-19 sepsis cohorts (non-COVID-19 viral pneumonia sepsis, bacterial pneumonia sepsis, and bacterial sepsis of non-pulmonary origin). Differences in proportions of phenotypes and their associated mortality were determined across these cohorts. RESULTS: Phenotype distribution was highly similar between COVID-19 and non-COVID-19 viral pneumonia sepsis cohorts, whereas the proportion of patients with the δ-phenotype was greater in both bacterial sepsis cohorts compared to the viral sepsis cohorts. The introduction of dexamethasone treatment was associated with an increased proportion of patients with the δ-phenotype (6% vs. 11% in the pre- and post-dexamethasone COVID-19 cohorts, respectively, p < 0.001). Across the cohorts, the α-phenotype was associated with the most favorable outcome, while the δ-phenotype was associated with the highest mortality. Survival of the δ-phenotype was markedly higher following the introduction of dexamethasone (60% vs 41%, p < 0.001), whereas no relevant differences in survival were observed for the other phenotypes among COVID-19 patients. CONCLUSIONS: Classification of critically ill COVID-19 patients into clinical phenotypes may aid prognostication, prediction of treatment efficacy, and facilitation of personalized medicine.


Subject(s)
COVID-19 , Communicable Diseases , Pneumonia , Sepsis , Critical Illness/epidemiology , Critical Illness/therapy , Dexamethasone/therapeutic use , Humans , Phenotype , SARS-CoV-2
2.
Cell Rep Med ; 3(6): 100652, 2022 06 21.
Article in English | MEDLINE | ID: covidwho-1960088

ABSTRACT

Disease recovery dynamics are often difficult to assess, as patients display heterogeneous recovery courses. To model recovery dynamics, exemplified by severe COVID-19, we apply a computational scheme on longitudinally sampled blood transcriptomes, generating recovery states, which we then link to cellular and molecular mechanisms, presenting a framework for studying the kinetics of recovery compared with non-recovery over time and long-term effects of the disease. Specifically, a decrease in mature neutrophils is the strongest cellular effect during recovery, with direct implications on disease outcome. Furthermore, we present strong indications for global regulatory changes in gene programs, decoupled from cell compositional changes, including an early rise in T cell activation and differentiation, resulting in immune rebalancing between interferon and NF-κB activity and restoration of cell homeostasis. Overall, we present a clinically relevant computational framework for modeling disease recovery, paving the way for future studies of the recovery dynamics in other diseases and tissues.


Subject(s)
COVID-19 , NF-kappa B , Cell Differentiation , Humans , Interferons/metabolism , NF-kappa B/genetics , Neutrophils/metabolism , Signal Transduction
3.
Crit Care ; 25(1): 281, 2021 08 05.
Article in English | MEDLINE | ID: covidwho-1770564

ABSTRACT

BACKGROUND: Procalcitonin (PCT) and C-reactive protein (CRP) were previously shown to have value for the detection of secondary infections in critically ill COVID-19 patients. However, since the introduction of immunomodulatory therapy, the value of these biomarkers is unclear. We investigated PCT and CRP kinetics in critically ill COVID-19 patients treated with dexamethasone with or without tocilizumab, and assessed the value of these biomarkers to detect secondary bacterial infections. METHODS: In this prospective study, 190 critically ill COVID-19 patients were divided into three treatment groups: no dexamethasone, no tocilizumab (D-T-), dexamethasone, no tocilizumab (D+T-), and dexamethasone and tocilizumab (D+T+). Serial data of PCT and CRP were aligned on the last day of dexamethasone treatment, and kinetics of these biomarkers were analyzed between 6 days prior to cessation of dexamethasone and 10 days afterwards. Furthermore, the D+T- and D+T+ groups were subdivided into secondary infection and no-secondary infection groups to analyze differences in PCT and CRP kinetics and calculate detection accuracy of these biomarkers for the occurrence of a secondary infection. RESULTS: Following cessation of dexamethasone, there was a rebound in PCT and CRP levels, most pronounced in the D+T- group. Upon occurrence of a secondary infection, no significant increase in PCT and CRP levels was observed in the D+T- group (p = 0.052 and p = 0.08, respectively). Although PCT levels increased significantly in patients of the D+T+ group who developed a secondary infection (p = 0.0003), this rise was only apparent from day 2 post-infection onwards. CRP levels remained suppressed in the D+T+ group. Receiver operating curve analysis of PCT and CRP levels yielded area under the curves of 0.52 and 0.55, respectively, which are both markedly lower than those found in the group of COVID-19 patients not treated with immunomodulatory drugs (0.80 and 0.76, respectively, with p values for differences between groups of 0.001 and 0.02, respectively). CONCLUSIONS: Cessation of dexamethasone in critically ill COVID-19 patients results in a rebound increase in PCT and CRP levels unrelated to the occurrence of secondary bacterial infections. Furthermore, immunomodulatory treatment with dexamethasone and tocilizumab considerably reduces the value of PCT and CRP for detection of secondary infections in COVID-19 patients.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Bacterial Infections/diagnosis , COVID-19 Drug Treatment , Coinfection/diagnosis , Dexamethasone/therapeutic use , Aged , C-Reactive Protein/analysis , COVID-19/complications , Critical Illness , Female , Humans , Male , Middle Aged , Netherlands , Procalcitonin/analysis , Prospective Studies
4.
Genome Med ; 13(1): 7, 2021 01 13.
Article in English | MEDLINE | ID: covidwho-1027902

ABSTRACT

BACKGROUND: The SARS-CoV-2 pandemic is currently leading to increasing numbers of COVID-19 patients all over the world. Clinical presentations range from asymptomatic, mild respiratory tract infection, to severe cases with acute respiratory distress syndrome, respiratory failure, and death. Reports on a dysregulated immune system in the severe cases call for a better characterization and understanding of the changes in the immune system. METHODS: In order to dissect COVID-19-driven immune host responses, we performed RNA-seq of whole blood cell transcriptomes and granulocyte preparations from mild and severe COVID-19 patients and analyzed the data using a combination of conventional and data-driven co-expression analysis. Additionally, publicly available data was used to show the distinction from COVID-19 to other diseases. Reverse drug target prediction was used to identify known or novel drug candidates based on finding from data-driven findings. RESULTS: Here, we profiled whole blood transcriptomes of 39 COVID-19 patients and 10 control donors enabling a data-driven stratification based on molecular phenotype. Neutrophil activation-associated signatures were prominently enriched in severe patient groups, which was corroborated in whole blood transcriptomes from an independent second cohort of 30 as well as in granulocyte samples from a third cohort of 16 COVID-19 patients (44 samples). Comparison of COVID-19 blood transcriptomes with those of a collection of over 3100 samples derived from 12 different viral infections, inflammatory diseases, and independent control samples revealed highly specific transcriptome signatures for COVID-19. Further, stratified transcriptomes predicted patient subgroup-specific drug candidates targeting the dysregulated systemic immune response of the host. CONCLUSIONS: Our study provides novel insights in the distinct molecular subgroups or phenotypes that are not simply explained by clinical parameters. We show that whole blood transcriptomes are extremely informative for COVID-19 since they capture granulocytes which are major drivers of disease severity.


Subject(s)
COVID-19/pathology , Neutrophils/metabolism , Transcriptome , Antiviral Agents/therapeutic use , COVID-19/virology , Case-Control Studies , Down-Regulation , Drug Repositioning , Humans , Neutrophils/cytology , Neutrophils/immunology , Phenotype , Principal Component Analysis , RNA/blood , RNA/chemistry , RNA/metabolism , Sequence Analysis, RNA , Severity of Illness Index , Up-Regulation , COVID-19 Drug Treatment
5.
Immunity ; 53(6): 1296-1314.e9, 2020 12 15.
Article in English | MEDLINE | ID: covidwho-965599

ABSTRACT

Temporal resolution of cellular features associated with a severe COVID-19 disease trajectory is needed for understanding skewed immune responses and defining predictors of outcome. Here, we performed a longitudinal multi-omics study using a two-center cohort of 14 patients. We analyzed the bulk transcriptome, bulk DNA methylome, and single-cell transcriptome (>358,000 cells, including BCR profiles) of peripheral blood samples harvested from up to 5 time points. Validation was performed in two independent cohorts of COVID-19 patients. Severe COVID-19 was characterized by an increase of proliferating, metabolically hyperactive plasmablasts. Coinciding with critical illness, we also identified an expansion of interferon-activated circulating megakaryocytes and increased erythropoiesis with features of hypoxic signaling. Megakaryocyte- and erythroid-cell-derived co-expression modules were predictive of fatal disease outcome. The study demonstrates broad cellular effects of SARS-CoV-2 infection beyond adaptive immune cells and provides an entry point toward developing biomarkers and targeted treatments of patients with COVID-19.


Subject(s)
COVID-19/metabolism , Erythroid Cells/pathology , Megakaryocytes/physiology , Plasma Cells/physiology , SARS-CoV-2/physiology , Adult , Aged , Aged, 80 and over , Biomarkers , Blood Circulation , COVID-19/immunology , Cells, Cultured , Cohort Studies , Disease Progression , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Proteomics , Sequence Analysis, RNA , Severity of Illness Index , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL